Differential Equations

Section 6.1

Differential Equation: AN EQUATION W/ DEeavadve(s)
Example: Show that the given function is a solution to the given equation.

$$
\begin{array}{lr}
y=e^{2 x} & y^{\prime \prime}-3 y^{\prime}+2 y=0 \\
y^{\prime}=2 e^{2 x} & 4 e^{2 x}-3 \cdot 2 e^{2 x}+2 \cdot e^{2 x} \stackrel{?}{=} 0 \\
y^{\prime \prime}=4 e^{2 x} & 0=0
\end{array}
$$

Solve the differential equation: Solve for \qquad y

$$
\begin{aligned}
& \frac{d y}{d x}=-4 x y^{2} \quad \begin{array}{ll}
\text { Inisme comotman } & f(0)=1 \quad \text { SuLving For }
\end{array} \\
& \text { solve for ceraly } \\
& \int \frac{1}{y^{2}} d y=\int-4 x d x \quad 1=\frac{1}{2(0)^{2}+C} \\
& \begin{array}{l}
-\frac{1}{y}=-2 x^{2}+C_{1} \\
\frac{1}{y}=2 x^{2}+C_{2} \\
y=\frac{1}{2 x^{2}+c_{2}} \quad \begin{array}{l}
\text { generan } \\
\text { sorunoN }
\end{array}
\end{array} \\
& C=1 \\
& y=\frac{1}{2 x^{2}+1} \\
& \text { PRRTICUAR } \\
& \text { SOLUTON }
\end{aligned}
$$

Solve the differential equation: Solve for

$$
\begin{aligned}
& x(y-1) \frac{d y}{d x}=y \quad y=\ln |x y|+C \\
& \frac{y-1}{y} d y=\frac{1}{x} d x \\
& 1-\frac{1}{y} d y=\frac{1}{x} d x \\
& y-\ln |y|=\ln |x|+C \\
& y=\ln |y|+\ln |x|+C
\end{aligned}
$$

Solve the differential equation: Solve for
Solve LATE

$$
\begin{aligned}
& \frac{d y}{d x}=y x^{2} \quad y(0)=-3 \\
& \frac{1}{y} d y=x^{2} d x \quad \ln |-3|=0+c \\
& \ln |y|=\frac{1}{3} x^{3}+C \quad e^{\ln |y|=\frac{1}{3} x^{3}+\ln 3} \\
& |y|=e^{1 / 3 x^{3}} \cdot e^{1+33} \\
& |y|=3 e^{113 x^{3}} \\
& y=-3 e^{1 / 3 x^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { if mme } \\
& \text { SOLVE LATE } \\
& \text { if mme } \\
& 113 x^{3}+c \\
& -e^{\ln |y|}=e^{1 / 3 x^{3}+C}
\end{aligned}
$$

Chapter 6 AP Packet \#48 (1998 AB4):

Let f be a function with $f(1)=4$ such that for all points on the graph of f, the slope is given by $\frac{3 x^{2}+1}{2 y}=\frac{d y}{d x}$
a. Find the slope of the graph of f at the point where $x=1$.

$$
\left.\frac{d y}{d x}\right|_{(1,4)}=\frac{3(1)^{2}+1}{2(4)}=\frac{1}{2}
$$

Chapter 6 AP Packet \#48 (1998 AB4):

Let f be a function with $f(1)=4$ such that for all points on the graph of f, the slope is given by $\frac{3 x^{2}+1}{2 y}$.
b. Write an equation for the line tangent to the graph of f at $x=1$ and use it to approximate $f(1.2)$.
$y-4=\frac{1}{2}(x-1)$
$y=4+1 / 2(x-1)$
$f(1.2) \approx 4+\frac{1}{2}(12-1)=4.1$

Chapter 6 AP Packet \#48 (1998 AB4):
c. Find $f(x)$ by solving the separable differential equation $\frac{d y}{d x}=\frac{3 x^{2}+1}{2 y}$ with the initial condition $f(1)=4$.

$$
\begin{array}{ll}
2 y d y=\left(3 x^{2}+1\right) d x & \sqrt{y^{2}}=\sqrt{x^{3}+x+14} \\
y^{2}=x^{3}+x+C & |y|=\sqrt{x^{3}+x+14} \\
4^{2}=1^{3}+1+C & y=C \\
14=C &
\end{array}
$$

Chapter 6 AP Packet \#48 (1998 AB4):
d. Use your solution from part c) to find $f(1.2)$.

$$
f(1.2)=\sqrt{(1.2)^{3}+(1.2)+14}=4.114
$$

Homework:

Chapter 6 AP Packet \#43-53 odd

